PlaneSpottingWorld welcomes all new members! Please gives your ideas at the Terminal.
Wright R-3350
The R-3350 Duplex-Cyclone was one of the most powerful radial aircraft engines produced in the United States. It was 18 cylinders, two-row, supercharged, and air-cooled. Power ranged from 2,200 to over 3,700 hp (1,640 to 2,760 kW), depending on the model. First developed prior to World War II, the R-3350's design required a long time to mature before finally being used to power the B-29 Superfortress. After the war, the engine had matured sufficiently to become a major civilian airliner design, notably in its turbo-compound forms.
Contents
History
In 1927 Wright Aeronautical introduced their famous Cyclone engine, which powered a number of designs in the 1930s. After merging with Curtiss to become Curtiss-Wright in 1929, an effort was started to redesign the engine to the 1,000 hp (750 kW) class. The new Wright R-1820 Cyclone 9 first ran successfully in 1935, and would become one of the most-used aircraft engines in the 1930s and WWII.
At about the same time Pratt & Whitney had started a development of their equally famous Wasp design into a larger and much more powerful two-row design that would easily compete with this larger Cyclone. In 1935 Wright decided to follow P&W's lead, and started to develop much larger engines based on the mechanicals of the Cyclone. The result were two designs with a somewhat shorter stroke, a 14 cylinder design that would evolve into the Wright R-2600, and a much larger 18 cylinder design that became the R-3350.
The first R-3350 was run in May 1937, but proved to be rather temperamental. Continued development was slow, both due to the complex nature of the engine, as well as the R-2600 receiving considerably more attention. The R-3350 didn't fly until 1941, after the prototype Douglas XB-19 (which originally used the Allison V-3420) was refitted with R-3350s.
Things changed dramatically in 1940 with the introduction of a new contract by the USAAC to develop a long-range bomber capable of flying from the U.S. to Germany with a 2,000 lb (900 kg) bomb load. Although smaller than the Bomber D designs that led to the B-19, the new designs required roughly the same amount of power. When preliminary designs were returned in the summer of 1940, three of the four designs used the R-3350. Suddenly the engine was seen as the future of Army aviation, and serious efforts to get the design into production started.
By 1943 the ultimate development of the new bomber program, the B-29, was flying. However the engines remained temperamental, and showed an alarming tendency to overheat, partially due to a too close cowl. A number of changes were introduced into the aircraft production line in order to provide more cooling at low speeds, and the planes were rushed to operate in the Pacific in 1944. This proved unwise, as the overheating problems were not completely solved, and the engines had a tendency to swallow its own valves. Because of a high magnesium content in the crankcase alloy, the resulting engine fires were often so intense the the main spar could burn through in seconds, resulting in catastrophic wing failure.[1]
Early versions of the R-3350 were equipped with carburetors, which led to serious problems with inadequate fuel mixture distribution. Near the end of World War II, in late 1944, the system was changed to use direct injection. This improved engine reliability immediately. After the war, the engine became a favourite for large aircraft of all designs, most notably the Lockheed Constellation and Douglas DC-7.
Following the war, in order to better serve the civilian market, the Turbo-Compound system was developed in order to deliver better fuel efficiency. In these versions of the engine three separate power recovery turbines were attached to the exhaust piping of each group of six cylinders, geared directly to the engine crankshaft by fluid drives in order to deliver more power (rather than using to deliver additional boost as in a turbocharger). This recovered about 20% of the heat of the exhaust (around 500 hp) that would otherwise be wasted. This is not without cost, however, for those devices are also nicknamed "Parts Recovery Turbines" (and worse) and were another source of failures.
By this point reliability had improved, with the mean time between overhauls at 3,500 hours and specific fuel consumption in the order of 0.4 lb/hp/hour (243 g/kWh). Engines still in use are now limited to 52 inches of Hg manifold pressure, being 2,880 HP with 100/130 octane fuel (or 100LL) instead of the 59.5 inches and 3,400 HP possible with 115/145 octane or better fuels, which are no longer available.
Aircraft usage
- Beechcraft XA-38 Grizzly
- Boeing B-29 Superfortress
- Boeing C-97 Stratofreighter
- Boeing XPBB Sea Ranger
- Canadair CL-28 ArgusTemplate:CAN
- Consolidated B-32 Dominator
- Curtiss F14C
- Curtiss XP-62
- Douglas A-1 Skyraider
- Douglas BTD Destroyer
- Douglas DC-7
- Douglas XB-31
- Fairchild C-119 Flying Boxcar
- Fairchild AC-119
- Lockheed Constellation
- Lockheed P-2 Neptune
- Lockheed XB-30
- Martin JRM Mars
- Martin B-33 Super Marauder
- Martin P5M Marlin
- Stroukoff YC-134
Models
- R-3350-13 : 2,200 hp (1,600 kW)
- R-3350-23 : 2,200 hp (1,600 kW)
- R-3350-24W : 2,500 hp (1,900 kW)
- R-3350-32W : 3,700 hp (2,800 kW)
- R-3350-53 : 2,700 hp (2,000 kW)
- R-3350-85 : 2,500 hp (1,900 kW)
- R-3350-89A : 3,500 hp (2,600 kW)
- R-3350-93W : 3,500 hp (2,600 kW)
Specifications
Notes
Related contents
Related development
- Wright Cyclone family
- Wright R-1300 Cyclone 7
- Wright R-1820 Cyclone 9
- Wright R-2600 Cyclone 14
Comparable engines
- Bristol Centaurus
- Pratt & Whitney R-4360
- Napier Sabre
- BMW 803 Cyclon 28, water cooled, contra-rotating propellers
References
- Wright R-3350-57 Cyclone Fact Sheets from the National Museum of the USAF website
- Jane, Fred T. Jane’s Fighting Aircraft of World War II. London: Studio, 1946. ISBN 1 85170 493 0.
Lists relating to aviation | |
---|---|
General | Timeline of aviation · Aircraft · Aircraft manufacturers · Aircraft engines · Aircraft engine manufacturers · Airports · Airlines |
Military | Air forces · Aircraft weapons · Missiles · Unmanned aerial vehicles (UAVs) · Experimental aircraft |
Notable incidents and accidents | Military aviation · Airliners · General aviation · Famous aviation-related deaths |
Records | Flight airspeed record · Flight distance record · Flight altitude record · Flight endurance record · Most produced aircraft |
cs:Wright R-3350 de:Wright R-3350 gl:Wright R-3350 it:Wright R-3350 ja:R-3350 (航空用エンジン)
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Wright R-3350". |