PlaneSpottingWorld welcomes all new members! Please gives your ideas at the Terminal.
Ilyushin Il-22 (1947)
For the 1970s Airborne Command Post aircraft of the same designation, see Ilyushin Il-18
The Ilyushin Il-22 was the first Soviet jet-engined bomber to fly. It used four Lyul'ka TR-1 turbojets carried on short horizontal pylons ahead and below the wing. The engines did not meet their designed thrust ratings and their fuel consumption was higher than planned. These problems meant that the aircraft couldn't reach its required performance and it was cancelled on 22 September 1947.[1]
Contents
Development
The Council of Ministers ordered the Ilyushin design bureau on 12 February 1946 to begin work on a bomber that would use four of the new TR-1 jet engines. Experiences with the first generation of jet fighters had revealed unsuspected problems involved with high-speed flight and Ilyushin devoted a lot of effort to mitigate them. The long, thin unswept wing was conventional in appearance, but it was shaped to improve lateral stability at high angles of attack and to prevent the onset of tip stall.[2]
Another problem discovered by the jet fighters was unexpectedly dropping a wing at high speeds and high altitudes. This was traced to manufacturing defects in the wings that made no difference at low speeds and altitudes, but meant that each wing had a slightly different airfoil and hence, a different amount of lift. To counter this Sergey Ilyushin and his team developed a new manufacturing technique that reversed the traditional practice where the internal supporting members were affixed to the assembly jig and the aircraft's skin panels were then attached. This new method meant that the skin panels were placed in the jigs where the correct curvature and shape could be guaranteed and the internal structure was then fastened to them. This required that manufacturing joints be used along the chord lines of the wings and tail surfaces, which split the spars and ribs in half. Similarly the fuselage built the same way, although it was split vertically along the centerline. This new technique did impose a small weight penalty, but had the unexpected advantage of greatly accelerating the assembly process as the internal equipment could be installed before the halves were joined together. This allowed several teams to work on a single sub-assembly before they were mated.[3]
Most of the other mult-engined jet aircraft in existence when the Il-22 was being designed either had the engines in a nacelle (singly or in pairs) directly attached to the underside of wing or were buried in the wing itself. Clustering them in a nacelle offered several advantages over individual nacelles as it reduced overall drag and minimized interference drag, but had the major operational disadvantage that an uncontained fire in one engine could disable its neighbors as well and the early jet engines were not paragons of reliability so this was a significant risk. Ilyushin chose to put the TR-1 engines ahead and below the wing leading edge on short horizontal pylons. This gave them the beneficial effect of acting as anti-flutter weights and proved to be more efficient aerodynamically than under-wing nacelles. This also facilitated engine changes and maintenance by making them more accessible to the ground crews.[4]
Neither the thin wing nor the engine nacelles offered any place to store the main landing gear so the fuselage was designed as a flattened oval to give them as wide a track as possible. This also provided plenty of room for the Template:Convert of fuel stored in three bags, one each ahead, above and behind the bomb bay. This could carry up to Template:Convert of bombs. The fuselage nose was largely glazed and came to a point, much like the noses of the Boeing B-29, Heinkel He 111 and Arado Ar 234, to reduce drag. The Il-22 had a crew of five, two pilots in the nose, the bombardier-navigator in front of them in the tip of the nose, the dorsal gunner/radio operator immediately behind the pilots and the rear turret gunner behind the tail.[5]
A Template:Convert Nudelman-Suranov NS-23 autocannon with 150 rounds was fixed on the lower starboard side of the nose; it was fired by the pilot who had a primitive ring sight to use for aiming. The dorsal turret mounted two Template:Convert Berezin B-20E guns with 400 rounds per gun and was capable of almost 360° of traverse; special microswitches prevented the gunner from firing into the bomber's tail. The turret was remotely controlled by the radio operator and was powered by electric motors for both traverse and elevation. He, and his gunsight, used a small observation blister at the rear of the main crew compartment to lay the guns on their target. The sight automatically compensated for parallax between the gunner and the turret as well as the required amount of target lead and the shell's ballistics. The remote-control system offered several advantages including a smaller turret that had less drag, the guns could be fixed more rigidly to their mounts, the sight was not exposed to vibrations from firing and could track targets more smoothly and the gunner's comfort did not have to be sacrificed to optimize the performance of the turret. The major disadvantage, of course, was that the remote control system was exceedingly complicated for the period and prone to breaking down. The rear gunner was placed at the very tail of the Il-22 to optimize his field of fire in an electro-hydraulically powered Il-KU3 turret that mounted another NS-23 cannon. The turret could traverse a total of 140°, elevate 35° and depress 30°.[6]
The prototype Il-22 was rapidly assembled and made its first flight on 24 July 1947. It proved to have docile handling characteristics, but was severely underpowered as the TR-1 engines only produced 80% of the required thrust. During the latter part of the manufacturer's flight tests the Il-22 made the first ever Soviet jet-assisted take-off on 7 February 1948 with a pair of SR-2 boosters.[7] As the thrust of the engines could not be increased in a timely manner Ilyushin made the decision not to submit the bomber for State acceptance trials as its performance did not meet the requirements laid down for it in 1946.[7]
Specifications (Il-22)
Data from Gordon, OKB Ilyushin: A History of the Design Bureau and its Aircraft
General characteristics
- Crew: 5
- Length: 21.05 m (69 ft 0¾ in)
- Wingspan: 23.06 m (75 ft 7 7/8 in)
- Height: ()
- Wing area: 74.5 m² (801 ft²)
- Empty weight: 14,950 kg (32,960 lb)
- Loaded weight: 20,000 kg (44,100 lb)
- Max takeoff weight: 20,000 kg (44,100 lb)
- Powerplant: 4× Lyul'ka TR-1 turbojet, 1,300 kgf (2,865 lbf) each
Performance
- Maximum speed: 718 km/h (446 mph)
- Range: 865 km (537 mi)
- Service ceiling: 11,100 m (36,420 ft)
Armament
- Guns:
- 1 x fixed, forward-firing 23 mm Nudelman-Suranov NS-23
- 2 x 20 mm Berezin B-20E gun in the dorsal turret
- 1 x 23 mm NS-23 gun in the rear turret
- Bombs: Up to Template:Convert
Related lists
Lists relating to aviation | |
---|---|
General | Timeline of aviation · Aircraft · Aircraft manufacturers · Aircraft engines · Aircraft engine manufacturers · Airports · Airlines |
Military | Air forces · Aircraft weapons · Missiles · Unmanned aerial vehicles (UAVs) · Experimental aircraft |
Notable incidents and accidents | Military aviation · Airliners · General aviation · Famous aviation-related deaths |
Records | Flight airspeed record · Flight distance record · Flight altitude record · Flight endurance record · Most produced aircraft |
See also
Comparable aircraft
Lists relating to aviation | |
---|---|
General | Timeline of aviation · Aircraft · Aircraft manufacturers · Aircraft engines · Aircraft engine manufacturers · Airports · Airlines |
Military | Air forces · Aircraft weapons · Missiles · Unmanned aerial vehicles (UAVs) · Experimental aircraft |
Notable incidents and accidents | Military aviation · Airliners · General aviation · Famous aviation-related deaths |
Records | Flight airspeed record · Flight distance record · Flight altitude record · Flight endurance record · Most produced aircraft |
References
Notes
Bibliography
- Gordon, Yefim; Komissarov, Dmitriy and Sergey (2004). OKB Ilyushin: A History of the Design Bureau and its Aircraft. London: Ian Allan. ISBN 1-85780-187-3.
- Nemecek, Vaclav (1986). The History of Soviet Aircraft from 1918. London: Willow Books. ISBN 0-00-218033-2.
External links
Fighters: Il-1 - Attack: Il-2 · Il-8 · Il-10 · Il-16 · Il-40 · Il-102
Bombers: Il-4 · Il-6 · Il-20 (I) · Il-22 (I) · Il-28 · Il-30 · Il-46 · Il-54
Transports: Il-12 · Il-14 · Il-18 · Il-20 (II) · Il-32 · Il-34 · Il-62 · Il-76 · Il-78 · Il-80 · Il-86 · Il-96 · Il-106 · Il-114
Reconnaissance: Il-20 (III) · Il-22 (II) · Il-24 · Il-38 · A-50 - Trainers: Il-103
Lists relating to aviation | |
---|---|
General | Timeline of aviation · Aircraft · Aircraft manufacturers · Aircraft engines · Aircraft engine manufacturers · Airports · Airlines |
Military | Air forces · Aircraft weapons · Missiles · Unmanned aerial vehicles (UAVs) · Experimental aircraft |
Notable incidents and accidents | Military aviation · Airliners · General aviation · Famous aviation-related deaths |
Records | Flight airspeed record · Flight distance record · Flight altitude record · Flight endurance record · Most produced aircraft |
This article is licensed under the GNU Free Documentation License. It uses material from the Wikipedia article "Ilyushin Il-22 (1947)". |