PlaneSpottingWorld welcomes all new members! Please gives your ideas at the Terminal.

F/A-18 Hornet

From PlaneSpottingWorld, for aviation fans everywhere
F/A-18 Hornet
Marine F/A-18 from Marine Fighter Attack Squadron 232
Type Multirole fighter
Manufacturer McDonnell Douglas/Boeing
Northrop
Designed by McDonnell Douglas
Maiden flight 1978-11-18
Introduced 1983-01-07
Primary users United States Navy
United States Marine Corps
Royal Australian Air Force
Spanish Air Force
Number built >1,458
Unit cost US$35 million in 2003
Developed from YF-17 Cobra
Variants CF-18 Hornet
F/A-18E/F Super Hornet
EA-18 Growler

The Boeing (formerly McDonnell Douglas) F/A-18 Hornet is a modern all-weather carrier-capable strike fighter jet, designed to attack both ground and aerial targets. Designed in the 1970s for service with the U.S. Navy and U.S. Marine Corps, the Hornet is also used by the air forces of several other nations. It has been the aerial demonstration aircraft for the Blue Angels since 1986. Its primary missions are fighter escort, fleet air defense, suppression of enemy air defenses (SEAD), interdiction, close air support and reconnaissance. Its versatility and reliability have proven it to be a valuable carrier asset, though it has been criticized for its lack of range and payload compared to its contemporaries. A version exported to Finland and Switzerland without ground attack capabilities is called the F-18 Hornet.

The F/A-18E/F Super Hornet is a distinct, evolutionary upgrade to the F/A-18 designed to serve a complementary role with Hornets in the U.S. Navy.[1]

History

Origins

The YF-17 Cobra was navalized and developed into the F/A-18

Development of the F/A-18 came as a result of the U.S. Navy's Naval Fighter-Attack, Experimental (VFAX) program to procure a multirole aircraft to replace the F-4 Phantom II, A-4 Skyhawk, and A-7 Corsair II, and to complement the F-14 Tomcat. Vice Admiral Kent Lee, then head of Naval Air Systems Command (NAVAIR), was the lead advocate for the VFAX against strong opposition from many Navy officers, including Vice Admiral William D. Houser, deputy chief of naval operations for air warfare - the highest ranking naval aviator.[2] In August 1973, congress mandated that the Navy pursue a lower-cost alternative to the F-14. Grumman proposed a stripped F-14 designated the F-14X, while McDonnell Douglas proposed a navalized F-15, but both were nearly as expensive as the F-14. That summer, Secretary of Defense Schlesinger ordered the Navy to evaluate the competitors in the Air Force's Light Weight Fighter (LWF) program, the General Dynamics YF-16 and Northrop YF-17, though the competition specified a day fighter with no strike capability. In May 1974, the House Armed Services Committee redirected $34 million from the VFAX to a new program, the Navy Air Combat Fighter (NACF), intended to make maximum use of the technology developed for the LWF program.[3]

Though the YF-16 won the LWF competition, the Navy was skeptical that an aircraft with one engine and narrow landing gear could be easily or economically adapted to carrier service, and refused to adopt an F-16 derivative. The Navy fought for and won permission to develop an aircraft based on the YF-17. Since the LWF did not share the design requirements of the VFAX, the Navy asked McDonnell Douglas and Northrop to design a new aircraft around the configuration and design principles of the YF-17. The new aircraft, designated the F-18, shared not a single essential dimension or primary structure with the YF-17. Secretary of the Navy W. Graham Claytor announced on March 1, 1977 that the name of the aircraft would be "Hornet".[3]

Development

F/A-18 attached to catapult on the flight deck of USS Abraham Lincoln

Northrop had enlisted the aid of McDonnell Douglas as a secondary contractor on the NACF proposal to capitalize on the latter's extensive experience in building carrier aircraft, including the highly successful F-4 Phantom II. On the F-18, the two companies agreed to split the parts manufacture evenly, with McDonnell Douglas completing the final assembly, representing ~20% of the work. McDonnell Douglas built the wings, stabilators, and forward fuselage; Northrop built the center and aft fuselage and vertical stabilators. McDonnell Douglas was the prime contractor for the naval versions; Northrop would become the prime contractor and take over final assembly for the F-18L land-based version which Northrop hoped to sell on the export market.

The F-18, initially known as McDonnell Douglas Model 267, was drastically modified from the YF-17 while retaining the same basic configuration. For carrier operations, the airframe, undercarriage, and arrestor hook were strengthened, folding wings and catapult attachments were added, and the landing gear widened. To meet Navy range and reserves requirements, McDonnell increased fuel capacity by 4,460 pounds, with the enlargement of the dorsal spine and the addition of a 96-gallon fuel cell to each wing (the YF-17 had dry wings). Most visibly, a "snag" was added to the leading edge of the wings and stabilators to prevent a flutter discovered in the F-15 stabilator. The wings and stabilators were enlarged, the aft fuselage widened by 4 inches, and the engines canted outward at the front. These changes added 10,000 pounds to the gross weight, bringing it to 37,000 lbs. The computer-assisted control system of the YF-17 was replaced with a wholly digital fly-by-wire system, the first to be installed in a production fighter.

The original plan specified acquiring 780 total of three closely related models: the single seat F-18 fighter and A-18 attack aircraft, differing only in avionics, and the dual-seat TF-18, which retained full mission capability of the F-18, except with a reduced fuel load. With redesign of the stores stations and improvements in avionics and multifunction displays, it became possible to combine the A-18 and F-18 into one aircraft, the F-18A. Starting in 1980, the aircraft began being referred to as the F/A-18A, and the designation was officially announced on 1 April 1984. The TF-18 was redesignated TF-18A, and finally, F/A-18B.[3]

Northrop's F-18L

Northrop developed the F-18L as a potential export aircraft. Since it did not have to be strengthened for carrier service, it was expected to be lighter and better performing, and a strong competitor to the F-16 Fighting Falcon then being offered to American allies. The F-18L was 7700 lb (3493 kg) (approximately 30%) lighter than the F/A-18A, due to a lighter landing gear, removal of the wing folding mechanism, and reduced frame thickness in some areas. Though the aircraft retained a lightened arresting hook. The most obvious external difference was the removal of the "snags" on the leading edge of the wings and stabilators. It still retained 71% commonality with the F/A-18 by parts weight, and 90% of the high-value systems, including the avionics, radar, and ECM suite, though alternatives were offered. Unlike the F/A-18, the F-18L carries no fuel in its wings and lacked weapons stations on the intakes. It had 3 underwing pylons on each side instead.

The partnership between the McDonnell Douglas and Northrop soured over competition for foreign sales for the two models. Northrop felt that McDonnell Douglas would put the F/A-18 in direct competition with the F-18L. In October 1979, Northrop filed a series of lawsuits charging that McDonnell was using Northrop technology developed for the F-18L for foreign sales in violation of their agreement, and asked for a moratorium on foreign sales of the Hornet via McDonnell Douglas. The case was resolved in 1985 when McDonnell agreed to pay Northrop $50 million for complete rights to the design, without any admission of wrongdoing. By then Northrop had ceased work on the F-18L, and most export orders were captured by the F-16 or the F/A-18.[3]

Entry into service

McDonnell Douglas rolled out the first F/A-18A on 13 September 1978, in blue-on-white colors marked with "Navy" on the left and "Marines" on the right. It took its first flight on 18 November. In a break with tradition, the Navy pioneered the "principal site concept" with the F/A-18, where almost all testing was done at NAS Pax River, instead of near the site of manufacture, and involving Navy test pilots instead of contractor pilots much earlier in the process.

In March 1979, Lt Cdr John Padgett became the first Navy pilot to fly the F/A-18. In all, nine F/A-18As and two F/A-18Bs were assigned to flight systems development. During this period, the snag on the leading edge of the stabilators was filled in, and the gap between the leading edge root extendors (LERX) and the fuselage mostly filled in. The gap, called the boundary layer air discharge (BLAD) slots, controlled the vortices generated by the LERX and presented clean air to the vertical stabilizers at high angles of attack. However, they also generated a great deal of parasitic drag, worsening the problem of the F/A-18's inadequate range. McDonnell filled in 80% of the gap, leaving a small slot to bleed air from the engine intake. This may have contributed to early problems with fatigue cracks appearing on the vertical stabilizers due to extreme aerodynamic loads, resulting in a momentary grounding in 1984 until the stabilizers were strengthened. Starting in May 1988, a small vertical fence was added to the top of each LEX to broaden the vortices and direct them away from the vertical stabilizers. This also provided a minor increase in controllability as a side effect.

An F/A-18 taking off from USS Kitty Hawk.

The first production F/A-18A flew on April 12, 1980, and following trials by VX-4 and VX-5, began to fill the Fleet Readiness Squadrons (FRS) VFA-125, VFA-106, and VMFAT-101, where pilots are introduced to the F/A-18. the Hornet entered operational service with Marine Corps squadron VMFA-314 at MCAS El Toro on January 7, 1983, and with Navy squadron VFA-113 in March 1983, replacing F-4s and A-7Es, respectively. The initial fleet reports were complimentary, indicating that the Hornet was extraordinarily reliable, a major change from its predecessor, the F-4J.[3]

After a production run of 371 F/A-18As, manufacture shifted to the F/A-18C in September 1987. As the A-6 Intruder was retired in the 1990s, its role was filled by the F/A-18. The F/A-18 demonstrated its versatility and reliability during Operation Desert Storm, shooting down enemy fighters and subsequently bombing enemy targets with the same aircraft on the same mission, and breaking all records for tactical aircraft in availability, reliability, and maintainability. The aircraft's survivability was proven by Hornets taking direct hits from surface-to-air missiles, recovering successfully, being repaired quickly, and flying again the next day.

Design evolution

In the 1990s the US Navy faced the retirement of its aging F-14 Tomcat, A-6 Intruder, EA-6 Prowler airframes without proper replacements even in development. To answer this deficiency, the Navy developed the F/A-18E/F Super Hornet. Despite its designation, it is not an upgrade of the F/A-18 Hornet, but rather, a new, larger airframe utilizing the design concepts of the Hornet. Until the deployment of the F-35C Lightning II, Hornets and Super Hornets will serve complementary roles in the US Navy carrier arsenal.

Design characteristics

A Hornet is doing a high-g pull-up during an air show. The high angle of attack causes powerful wingtip vortices to form at the leading edge extensions. The vortices shown are so powerful that the drop in pressure experienced at their center results in visible vapor formations from water precipitating in the air, sometimes called "vapes".

The F/A-18 is a twin engine, mid-wing, multi-mission tactical aircraft. It is superbly maneuverable, owing to its good thrust to weight ratio, digital fly-by-wire control system, and leading edge extensions (LEX). The LEX allow the Hornet to remain controllable at high angles of attack. This is because the LEX produce powerful vortices over the wings, creating turbulent airflow over the wings and thus delaying or eliminating the aerodynamic separation responsible for stall, allowing the Hornet's wings to generate lift several times the aircraft's weight, despite high angles of attack. The Hornet is therefore capable of extremely tight turns over a large range of speeds.

Canted vertical stabilizers are another distinguishing design element, and among the other design characteristics that enable the Hornet's excellent high angle-of-attack capability include oversized horizontal stabilators, oversized trailing edge flaps that operate as flaperons, large full-length leading-edge flaps, and flight control computer programming that multiplies the movement of each control surface at low speeds and moves the vertical rudders inboard instead of simply left and right. The Hornet's normally high angle-of-attack performance envelope was put to rigorous testing and enhanced in the NASA F-18 HARV. NASA used the F-18 HARV to flight-validate high angle-of-attack handling qualities that had not been done previously because of the difficulty in performing such tests in a safe and methodical manner. The F/A-18's stabilators were used as canards on NASA's F-15S/MTD.

The Hornet was among the first aircraft to heavily utilize multi-function displays, which at the switch of a button allow the pilot to perform either fighter or attack roles or both. This "force multiplier" capability gives the operational commander more flexibility in employing tactical aircraft in a rapidly changing battle scenario. It was the first Navy aircraft to incorporate a digital multiplex avionics bus, enabling easy upgrades.

The Hornet is also notable for having been designed with maintenance in mind, and as a result has required far less downtime than its counterparts, the F-14 Tomcat and the A-6 Intruder. Its mean time between failure is three times greater than any other Navy strike aircraft, and requires half the maintenance time. For example, whereas replacing the engine on the A-4 Skyhawk required removing the aircraft's tail, the engine on the Hornet is attached at only three points and can be directly removed without excessive disassembly.

The General Electric F404-GE-400 or F404-GE-402 engines powering the Hornet were also innovative in that they were designed with operability, reliability, and maintainability first. The result is an engine that, while unexceptional on paper in terms of rated performance, demonstrates exceptional robustness under a variety of conditions and is resistant to stall and flameout. By contrast, the Pratt & Whitney TF30 engines that power the F-14A are notoriously prone to flameout under certain flight conditions.

The engine air inlets of the Hornet, like that of the F-16, are "fixed", while those of the F-4, F-14, and F-15 have variable geometry or variable ramp engine air inlets. The variable geometry enables high-speed aircraft to keep the velocity of the air reaching the engine below supersonic. This is one speed limiting factor in the Hornet design. Instead, the Hornet uses bleed air vents on the inboard surface of the engine air intake ducts to slow and reduce the amount of air reaching the engine. While not as effective as variable geometry, the bleed air technique functions well enough to achieve near Mach 2 speeds, which is within the designed mission requirements. The less sophisticated design is also more robust.

Because it was designed as a light multirole aircraft to complement the specialized F-14 and A-6 airframes, it had a relatively low fuel fraction. That is, its internal fuel capacity is small relative to its take-off weight, at around 23%. Most aircraft of its class has a fuel fraction between .30 to .35. This situation was exacerbated by the addition of new avionics over its lifespan, further reducing the fuel fraction.

Combat service

The F/A-18 first saw combat action in April 1986, when Hornets from Coral Sea flew SEAD missions against Libyan air defenses during the attack on Benghazi as part of Operation El Dorado Canyon.

Two US Navy F/A-18s were lost in the first hours of the Gulf War in 1990. One of the pilots, Lt Robert Dwayer was killed although the cause of his loss is unclear. The other, Lt Cdr M. Scott Speicher (VFA-81) remains missing in action. There are conflicting government accounts of Speicher's downing. One source, an unclassified summary of a 2001 CIA report, states that Speicher's aircraft was destroyed by an air-to-air missile fired by an Iraqi fighter, and that he may have survived by ejecting.[4] F/A-18 pilots were credited with two kills during the Gulf War, both MiG-21 'Fishbeds'.[5]

Both U. S. Navy F/A-18Cs and Marine F/A-18A/C/D models were used continuously in Operation Southern Watch and over Bosnia and Kosovo in the 1990s. U. S. Navy Hornets flew in Operation Enduring Freedom from carriers operating in the North Arabian Sea. Both the F/A-18C and newer F/A-18E/F variants were used in Operation Iraqi Freedom. A F/A-18C was accidentally downed in a Friendly Fire incident by a Patriot missile early in the conflict, and two others collided over Iraq in May 2005.

Variants

A+/C/D

A Finnish Air Force F/A-18C at RIAT 2005

The F/A-18A and F/A-18C are single-seat aircraft. The F/A-18B and F/A-18D have two seats, space for the rear cockpit being provided by a relocation of avionic equipment and a 6% reduction in internal fuel; two-seat Hornets are otherwise fully combat-capable. The B model is used primarily for training, while the D model is configured as an all-weather strike craft. Whereas the B model has both seats configured as pilot's stations, the D model's rear seat is configured for a Weapons and Sensors Officer to assist in operating the weapons systems. The D model is primarily operated by the U.S. Marine Corps in the night attack and FAC(A) (Forward Air Controller (Airborne)) roles.

The F/A-18C and D models are the result of a block upgrade in 1987 incorporating upgraded radar, avionics, and the capacity to carry new missiles such as the AIM-120 AMRAAM air-to-air missile and AGM-65 Maverick and AGM-84 Harpoon air-to-surface missiles. Other upgrades include the Martin-Baker NACES (Navy Aircrew Common Ejection Seat), and a self-protection jammer. A synthetic aperture ground mapping radar enables the pilot to locate targets in poor visibility conditions. C and D models delivered since 1989 also include an improved night attack capability, consisting of the Hughes AN/AAR-50 thermal navigation pod, the Loral AN/AAS-38 Night Hawk FLIR (forward looking infrared array) targeting pod, night vision goggles, and two full-color (previously monochrome) MFDs and a color moving map.

The Blue Angels' F/A-18.

The F/A-18A and B models are used by the US Navy's Blue Angels aerobatic team, performing at airshows and other special events across the US and worldwide. The Blue Angels have used the Hornet since 1986 when it replaced the A-4 Skyhawk. The two-seat B model is typically used to give rides to VIPs, but can also fill in for other aircraft in the squadron in a normal show if the need arises.

Beginning in 1991, Hornets were upgraded to the F404-GE-402 engine, providing a 20% increase in thrust.

In 1992, the original Hughes AN/APG-65 radar was replaced with the Hughes (now Raytheon) AN/APG-73, a faster and more capable radar. The A model Hornets upgraded to the AN/APG-73 are designated F/A-18A+. Since 1993, the Nite Hawk also has a designator/ranger laser, allowing it to self-mark targets.

In addition, 48 D model Hornets are configured for reconnaissance as the F/A-18D (RC) version, substituting the gun with an electro-optical sensor package call ATARS.

Production of the F/A-18C ended in 1999.

E/F Super Hornet

F/A-18F Super Hornet at RIAT 2004

The single seat F/A-18E and two-seat F/A-18F Super Hornets carry over the name and design concept of the original F/A-18, but have been extensively redesigned. The Super Hornet has a new, 25% larger airframe, more powerful GE F414 engines based on F/A-18's F404, and upgraded avionics suite. The aircraft is currently in production and will eventually equip 22 squadrons.

EA-18G Growler

Main article: EA-18 Growler

The EA-18G Growler is an electronic warfare version of the F/A-18F Super Hornet, slated to begin production in 2008, with fleet deployment in 2009. The EA-18G will replace the Navy's EA-6B Prowler and the already-retired Air Force EF-111A Ravens.

Other US variants

File:F-A-18 X 53 NASA.png
X-53, NASA's modified F/A-18.

RF-18

  • This designation was given to a reconnaissance version of the F/A-18A. The first of two prototypes flew in February 1984, however the variant was not produced.

TF-18A

  • Two-seat training version of the F/A-18A fighter, later redesignated F/A-18B.

F-18D(CR)

  • Proposed two-seat reconnaissance version for the US Marine Corps. The F-18D(CR) was originally intended to replace the RF-4B Phantom tactical reconnaissance aircraft. None were ever built.

F-18 HARV

  • Single-seat high-alpha research vehicle for NASA.

X-53 Active Aeroelastic Wing

  • A NASA F/A-18 has been modified to demonstrate the Active Aeroelastic Wing technology, and was designated X-53 in December 2006.

Export variants

These designations are not part of 1962 United States Tri-Service aircraft designation system

F-18L
This was a lighter land-based version of the F/A-18 Hornet. It was designed to be a single-seat air-superiority fighter and ground-attack aircraft. It was originally intended to be built by Northrop as the export version of the F/A-18 Hornet. The F-18L was lighter due to the removal of carrier landing capability. Despite the advantages, customers preferred the "ordinary" Hornet, and the F-18L never went into production.

F/A-18 Hornet

(A)F/A-18A/B

  • (A)F/A-18A: Single-seat fighter/attack version for the Royal Australian Air Force.
  • (A)F/A-18B: Two-seat training version for the Royal Australian Air Force.

"F/A-18A" was the original company designation, designations of "AF-18A" & "ATF-18A" have also been applied. Assembled in Australia (excluding the first two (A)F/A-18Bs) by Aero-Space Technologies of Australia (ASTA) from 1985 through to 1990, from kits produced by McDonnell Douglas with increasing local content in the later aircraft. Originally the most notable differences between a Australian (A)F/A-18A/B and a US F/A-18A/B were the lack of a catapult attachment, replacement of the carrier tailhook for a lighter "land" arresting hook, and the replacement of the automatic carrier landing system with a Instrument Landing System. Australian Hornets have been involved in a number of major upgrade programs. This program called HUG (Hornet Upgrade) has had a few evolutions over the years. The first was to give Australian Hornets F/A-18C model avionics. The second and current upgrade program (HUG 2.2) updates the fleet's avionics to beyond E model Hornet capability.

Canadian CF-18A Hornet off the coast of Hawaii. Note the 'false cockpit' painted on the underside of the aircraft, intended to confuse enemy pilots during dogfights.

CF-18 Hornet

  • CF-18A : Single-seat fighter/attack version for the Canadian Armed Forces. Canadian Armed Forces designation CF-188A Hornet.
  • CF-18B : Two-seat training version for the Canadian Armed Forces. Canadian Armed Forces designation CF-188B Hornet.

EF-18 Hornet

  • EF-18A: Single-seat fighter/attack version for the Spanish Air Force. Spanish Air Force designation C.15.
  • EF-18B: Two-seat training version for the Spanish Air Force. Spanish Air Force designation CE.15.

KAF-18 Hornet

  • KAF-18C: Single-seat fighter/attack version for the Kuwait Air Force.
  • KAF-18D: Two-seat training version for the Kuwait Air Force.

F-18C/D Hornet

  • Finland uses F/A-18C/D Hornets, with Finland specific mid-life update. It lacks certain avionics, target acquisition and weapon control features, limiting its ground attack capability. The 57 single-seated F-18C model units were assembled by Patria in Finland.[6]

F-18C/D Hornet

  • Switzerland uses F-18C/D,[7] later Swiss specific mid-life update. The Swiss F-18s were originally without ground attack capability until hardware was retrofitted.

Foreign Operators

Operators of the F/A-18 are shown in blue.

Though Navy aircraft have not historically sold well on the export market, the F/A-18 has been purchased and is in operation with a number of foreign air services. Export Hornets are typically similar to U.S. models of a similar manufacture date. Since none of the customers operate aircraft carriers, all export models have been sold without the automatic carrier landing system; and Australia further removed the catapult attachment on the nose gear. Except for Canada, all export customers purchased their Hornets through the U.S. Navy, via the U.S. Foreign Military Sales (FMS) Program, where the Navy acts as the purchasing manager but incurs no financial gain or loss. Canada ordered its planes directly from the manufacturer.

Australia

Canada

Main article: CF-18 Hornet

Finland

Further information: Finnish Air Force#F-18 Hornet

Kuwait

Malaysia

Spain

Spanish EF-18.

Switzerland

Other potential operators

The F/A-18C and F/A-18D were considered by the French Marine Nationale during the 1980s for deployment on their aircraft carriers Clemenceau and Foch[9] and again in the 1990s for the later nuclear-powered Charles de Gaulle,[10] in the event that the Dassault Rafale M was not brought into service when originally planned.

The Philippine Air Force also expressed its interest in the F/A-18 Hornet but its plan to purchase modern multi-role fighter aircraft to replace its retired F-5A/B Freedom Fighters has been shelved due to economic reasons and having counter-insurgency operations as its main priority.

Milestones

A Finnish F-18C climbs vertically.
F/A-18 Hornet in transonic flight (Note Prandtl-Glauert condensation)

Boeing Milestones list

  • May 2, 1975 – The U.S. Navy selects McDonnell Douglas Corporation as the prime contractor for development of the F-18 strike fighter.
  • Sep 13, 1978 – The U.S. Navy's F-18 Hornet makes its public debut during rollout ceremonies in St. Louis, Mo.
  • Nov 18, 1978 – The F-18A Hornet makes its first flight, taking off from Lambert-St. Louis International Airport with McDonnell Aircraft chief test pilot Jack Krings at the controls.
  • Jan 16, 1979 – The first F-18 is flown to the Naval Air Test Center in Patuxent River, Md., for continued flight testing.
  • Nov 3, 1979 – the F-18 completes its first sea trials after the third Hornet makes 32 successful launches and landings aboard the aircraft carrier USS America.
  • December 1979 – The first F-18B makes its maiden flight.
  • April 1980 – The first production F-18, Hornet number 12, is delivered to the U.S. Navy.
  • Oct 25, 1982 – Canada becomes the first international customer when the first CF-18 Hornet is delivered to the Canadian Forces Air Command.
  • December 1982 – The U.S. Navy officially redesignates the Hornet the F/A-18 to emphasize its dual role capabilities as both an air-to-air and air-to-ground tactical aircraft.
  • Jan 7, 1983 – The F/A-18 Hornet officially enters U.S. operational service with U.S. Marine Corps squadron VMFA-314 at Marine Corps Air Station El Toro, Ca.
  • October 1983 – The first Hornet is delivered to a U.S. Navy operational squadron.
  • Oct 29, 1984 – The first F/A-18 Hornet is delivered to the Royal Australian Air Force.
  • Nov 22, 1985 – The first EF-18 for the Spanish Air Force is delivered.
  • March 10, 1986 – The U.S. Navy selects the F/A-18 Hornet as the official aircraft of the Blue Angels flight demonstration team.
  • November 1986 – The first F/A-18 Hornet squadron arrives in Japan to prepare for deployment aboard USS Midway.
  • February 1987 – The 100th Canadian CF-18 is delivered.
  • April 1987 – The 500th Hornet is delivered.
  • September 1987 – First delivery of an F/A-18C/D.
  • Sept 3, 1987 – The F/A-18C makes its first flight.
  • Jan 22, 1988 – The 380th and final F/A-18A for the U.S. Navy and Marine Corps is delivered, accepted by VMFA-312.
  • May 6, 1988 – The F/A-18D makes its first flight.
  • Oct 3, 1988 – Switzerland's Federal Military Department announces plans to purchase 34 Hornets, armament, spares and support, a contract worth an estimated US$1.9 billion.
  • Nov 14, 1989 – The first production night attack F/A-18 Hornet is delivered to Patuxent River, Md.
  • April 10, 1990 – The F/A-18 Hornet fleet surpasses one million flight hours.
  • May 11, 1990 – The U.S. Marine Corps rolls out the night attack F/A-18D at Marine Corps Air Station El Toro, Ca.
  • Jan 17, 1991 – During Operation Desert Storm, U.S. Navy pilots Lt. Nick Mongilio and Lt. Cmdr. Mark Fox become the first pilots to register air-to-air kills while still completing their original air-to-ground mission. While going out from USS Saratoga in the Red Sea to bomb an airfield in southwestern Iraq, an E-2 warns them of approaching MiG-21 aircraft. The Hornets shoot down two MiGs and resume their bombing run before returning to Saratoga.
  • April 18, 1991 – The 1,000th F/A-18 Hornet is delivered to the U.S. Marine Corps.
  • Oct 8, 1991 – The first Kuwait Air Force F/A-18 Hornet is delivered.
  • May 6, 1992 – Finland's Ministry of Defense approves the purchase of 64 Hornets, a program worth approximately $3 billion.
  • Feb 10, 1993 – An F/A-18 Hornet becomes the 10,000th jet aircraft built by McDonnell Douglas in St. Louis when it is delivered to the U.S. Navy.
  • June 7, 1995 – The first F-18 Hornet for the Finnish Air Force is delivered.
  • Jan 25, 1996 – The first F/A-18 Hornet for the Swiss Air Force is delivered.
  • August 2000 – The final delivery of an F/A-18, an F/A-18D Hornet, is delivered to the U.S. Marine Corps.
  • December 12, 2002 – The F/A-18 Hornet fleet surpasses five million flight hours.
  • May 25, 2005 – The F/A-18 Hornet lands on the French carrier Charles de Gaulle for the first time, during joint exercises which were part of Multi-National Maritime Exercise (MNME) 05-1.
  • December 8, 2006 – NASA F/A-18 equipped with Active Aeroelastic Wing technology designated X-53.

Specifications (F/A-18C Hornet)

Orthographically projected diagram of the F/A-18 Hornet

General characteristics

Performance

Armament

Avionics

  • APG-73 radar


Popular culture

F/A-18C of the Swiss Air Force taxis for takeoff

Hornets make frequent appearances in action movies and military novels.

The F/A-18 series are playable aircraft in many flight simulator video games. It is featured in the game F/A-18 Hornet from GraphSim, Interactive Magic's iF/A-18 Carrier Strike Fighter (1997), F/A-18E Super Hornet by Digital Integration (1999) and F-18 Precision Strike Fighter by Xicat (2002). The F-18 is included in Jane's survey sims US Navy Fighters (1994) and it subsequent release, Fighters Anthology (1997). In 1999 Jane's released a dedicated simulation simply titled Jane's F/A-18 Simulator.

The Hornet was also featured in the Hollywood film Independence Day. Inaccurately, some F/A-18s in the film were seen with markings from the United States Air Force, the Israeli Air Force, and the Iraqi Air Force. They were also erroneously equipped with a drogue parachute that deployed from beneath the speed brake between the vertical stabilizers.

References

  1. U.S. Navy. F/A18-E/F Super Hornet ....Leading Naval Aviation into the 21st Century. U.S. Navy.
  2. Kelly, Orr (1990). Hornet: the inside story of the F/A-18. Novato: Presido Press. ISBN 0-89141-344-8. 
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Jenkins, Dennis R. (2000). F/A-18 Hornet: A Navy Success Story. New York: McGraw-Hill. ISBN 0-07-134696-1. 
  4. INTELLIGENCE COMMUNITY ASSESSMENT OF THE LIEUTENANT COMMANDER SPEICHER CASE CIA
  5. Miller, David (2002). The Illustrated Directory of Modern Weapons. St. Paul: MBI Publishing Company. ISBN 0-7603-1346-6. 
  6. Karivalo, Perttu: Tomcat vs. Hornet: An Air Forces Monthly Special, page 68. Key Publishing Ltd, 2003.
  7. Nicholls, Mark: Tomcat vs. Hornet: An Air Forces Monthly Special, page 78. Key Publishing Ltd, 2003.
  8. Crick, Darren. ADF Aircraft Serial Numbers RAAF A21 McDonnell Douglas F/A-18A/B Hornet. Retrieved on 31 December 2006.
  9. Tillman B (1990). MiG Master: Story of the F-8 Crusader (second edition). Naval Institute Press. ISBN 0-87021-585-X. .
  10. Donald, David: Carrier Aviation Air Power Directory, page 122. AIRtime Publishing Inc, 2001. ISBN 1-880588-43-9

External links

Related content

Commons-logo.svg
Wikimedia Commons has media related to:

Template:Portalpar

Related development

Comparable aircraft

Designation sequence

Related lists

See also

az:F/A-18 da:F-18 Hornet de:McDonnell Douglas F/A-18 es:F/A-18 Hornet fr:McDonnell Douglas F/A-18 Hornet gl:F/A-18 Hornet ko:맥도널더글러스 F/A-18 호넷 it:McDonnell Douglas F/A-18 Hornet he:F/A-18 הורנט hu:F/A–18 Hornet nl:F/A-18 Hornet ja:F/A-18 (戦闘攻撃機) no:Boeing F/A-18 Hornet pl:McDonnell Douglas F/A-18 Hornet pt:F/A-18 Hornet ro:Boeing F-18 Hornet/ Super Hornet sl:McDonnell Douglas F/A-18 Hornet fi:F/A-18 Hornet sv:F/A-18 Hornet th:เอฟ/เอ-18 tr:F/A-18 zh:F/A-18黃蜂式戰鬥攻擊機